10) Causality Check of LTI Systems Using the Impulse Response

- Recall: A LTI system is said to be causal if the output *y*(*n*)
- Goal: Develop the condition for an LTI system to be causal in terms of h(n)
- Proof: Define 2 sequences $x_1(n)$ and $x_2(n)$ so that $x_1(n) = x_2(n)$ n n_0
 - system outputs:

$$y_1(n) =$$

$$y_2(n) =$$

11) LTI Systems and Linear Difference Equations

• An important subclass of LTI systems is characterized by a linear difference equation of the form:

$$y(n) = \tag{1}$$

• Input/output relationship may be represented by a block diagram

• Example:

$$y(n)=b_0x(n)+b_1x(n-1)+b_2x(n-2)$$

 $y(n)=a_1y(n-1)+a_2y(n-2)+b_0x(n)+b_1x(n-1)+b_2x(n-2)$

12) Impulse & Step Response and Difference Equation

Recall that

Observation: The only thing we need to know about the system to compute the output is h(n)

Example: You are given the I/O relationship to a system

$$y(n) = 0.6y(n-1) + 2x(n)$$

- Compute and plot the impulse response h(n)
- Compute and plot the unit step response

13) LTI Systems and Initial Condition Response

• Definition: The **initial condition (IC) response** of a LTI system is the part of the response caused by initial conditions (sometimes called the "zero-input response"

• Why is the IC response important?

• Definition: The LTI system is said to be stable if the IC response approaches 0 as $n \to \infty$

• Example: y(n)=ay(n-1)+x(n) with y(0)=K

• Recall:

The LTI system is said to be stable if the IC response approaches 0 as $n \to \infty$

• Example: y(n)=0.6y(n-1)+2x(n) with y(0)=1

• IC response and generic LTI IO relationships

$$y(n)-a_1y(n-1)-...-a_Ny(n-N)=b_0x(n)+...+b_\ell x(n-\ell)$$

• Recall:

The LTI system is said to be stable if the IC response approaches 0 as $n \to \infty$

• Special case for the solution when the characteristic polynomial has multiple roots.

Given the IO relationship:

$$y(n)-a_1y(n-1)-...-a_Ny(n-N)=b_0x(n)+...+b_\ell x(n-\ell)$$

Resulting characteristic equation is of the form:

Assume the characteristic equation has a root r_1 of multiplicity L and the other roots are distinct

• Example: y(n) = -0.3y(n-1) + 0.4y(n-2) + 0.5x(n) + 0.5x(n-1)y(-1) = y(-2) = 1

Compute:

- 1) the characteristic equation
- 2) the characteristic roots
- 3) the stability condition of the system

• How to check that the solution is valid?

14) Linear Difference Equation and Total Solution

$$y(n)-a_1y(n-1)-...-a_Ny(n-N)=b_0x(n)+...+b_\ell x(n-\ell)$$

- Total solution calculation
 - Procedure to compute the solution to (1) is similar to solving differential equations

Constants computed by using the total solution

a) Complementary Solution

• Equation to solve for $n \ge 0$

$$y(n)-a_1y(n-1)-...-a_Ny(n-N)=0$$

initial condition $y(-1) \dots y(-N)$ given

• First assume $y_c(n) = r^n$

$$\Rightarrow y_c(n) - a_1 y_c(n-1) - \dots - a_N y_c(n-N) =$$

⇒ General form of complementary solution is is given by:

$$y_c(n)=$$

b) Particular Solution

Equation to solve

$$y(n)-a_1y(n-1)-...-a_Ny(n-N)=b_0x(n)+...+b_\ell x(n-\ell)$$

• Pick x(n) and assume that particular solution is of the same general form as the specified x(n)

Shape of x(n)	Shape of particular solution
C ₁	C ₂
Kn	K ₁ n+K ₂
K ₁ a ⁿ	K ₂ a ⁿ
Ka ⁿ cos(nθ)	$K_1 a^n \cos(n\theta + K_2)$
Kcos(nθ)	$K_1 \cos(n\theta + K_2)$

Example:

Find the total solution for $n \ge 0$ for

$$y(n) + y(n-1) - 6y(n-2) = x(n)$$

- a) When x(n) = 8u(n) and initial conditions y(-1) = 1, y(-2) = -1
- b) When $x(n) = 2^n u(n)$ with y(-1) = 1, y(-2) = -1

• **Example:** Find the solution for $n \ge 0$ to

$$y(n) + 0.5y(n-1) + 0.4y(n-2) = 0$$

when initial conditions are y(-1) = -0.8; y(-2) = 0.5

18

Example:

Find the total solution for $n \ge 0$ for

$$y(n)-y(n-1)+0.5y(n-2)=0$$

initial conditions y(-1) = -0.8, y(-2) = 0.5

20

Example:

Find the total solution for $n \ge 0$ for

$$y(n) + y(n-2) = x(n) + x(n-1)$$

initial conditions y(-2) = -10, y(-1) = 0, x(n) = 10u(n)

15) Impulse Response and Difference Equation

Recall that

Example: Compute the impulse response to the system

$$y(n) + y(n-1) - 6y(n-2) = x(n)$$

with $x(n) = 8u(n)$; $y(-1) = 1$; $y(-2) = -1$

16) System Output Computation Using **MATAB**

Given

$$y(n) + a_1 y(n-1) + \dots + a_N y(n-N) =$$

$$+ b_0 x(n) + \dots + b_L x(n-L)$$

• Pack coefficients in two vectors:

$$\mathbf{A} = [$$

$$\mathbf{B} = [$$

• Output vector $y\{y(0), y(1), \dots, y(k)\}$ to input vector $\underline{x}\{x(0), x(1), \dots, x(k)\}$ is given by

$$y =$$

Example: Assume you want to average 10 input data points

$$y(n) = \frac{1}{10}(x(n) + \dots + x(n-9))$$

$$A =$$

$$B =$$